博客
关于我
C++:算法设计策略之动态规划法
阅读量:718 次
发布时间:2019-03-21

本文共 1199 字,大约阅读时间需要 3 分钟。

最长公共子序列问题

题目描述

给定两个序列X={x₁, x₂, …, xₘ}和Y={y₁, y₂, …, yₙ},目标是找出X和Y的最长公共子序列(LCS)。

输入

输入分为以下几行:

  • 第一行:输入序列X;
  • 第二行:输入序列Y。

注意:输入序列后面添加一个空格字符,以便处理特殊情况。

输出

输出X和Y的最长公共子序列的长度。

实验代码

以下是实现最长公共子序列问题的代码:

#include 
#include
#include
using namespace std;string a, b;int N = 1001;int r[N][N] = {0};int LCS(int la, int lb) { int i, j; // 初始化边界行列 for (i = 1; i <= la; ++i) r[i][0] = 0; for (j = 1; j <= lb; ++j) r[0][j] = 0; //Fill DP table for (i = 1; i <= la; ++i) { for (j = 1; j <= lb; ++j) { if (a[i] == b[j]) { r[i][j] = r[i-1][j-1] + 1; } else { if (r[i-1][j] >= r[i][j-1]) { r[i][j] = r[i-1][j]; } else { r[i][j] = r[i][j-1]; } } } } return r[la][lb];}int main() { // 读取输入 cin >> a >> b; int la = a.length(), lb = b.length(); // 方便处理边界情况 a += ' '; b += ' '; int LCS_length = LCS(la, lb); cout << LCS_length; return 0;}

结论

通过上述方法,我们能够高效地解决最长公共子序列问题。该算法基于动态规划原理,时间复杂度为O(NM),空间复杂度为O(NM)(其中N和M分别为两个序列的长度)。此外,为了确保程序的鲁棒性,代码中增加了对边界情况的处理。

转载地址:http://kozgz.baihongyu.com/

你可能感兴趣的文章
Object.keys()的详解和用法
查看>>
objectForKey与valueForKey在NSDictionary中的差异
查看>>
Objective - C 小谈:消息机制的原理与使用
查看>>
OBJECTIVE C (XCODE) 绘图功能简介(转载)
查看>>
Objective-C ---JSON 解析 和 KVC
查看>>
Objective-C 编码规范
查看>>
Objective-Cfor循环实现Factorial阶乘算法 (附完整源码)
查看>>
Objective-C——判断对象等同性
查看>>
objective-c中的内存管理
查看>>
Objective-C之成魔之路【7-类、对象和方法】
查看>>
Objective-C享元模式(Flyweight)
查看>>
Objective-C以递归的方式实现二叉搜索树算法(附完整源码)
查看>>
Objective-C内存管理教程和原理剖析(三)
查看>>
Objective-C实现 Greedy Best First Search最佳优先搜索算法(附完整源码)
查看>>
Objective-C实现 jugglerSequence杂耍者序列算法 (附完整源码)
查看>>
Objective-C实现 lattice path格子路径算法(附完整源码)
查看>>
Objective-C实现1000 位斐波那契数算法(附完整源码)
查看>>
Objective-C实现2 个数字之间的算术几何平均值算法(附完整源码)
查看>>
Objective-C实现2d 表面渲染 3d 点算法(附完整源码)
查看>>
Objective-C实现2D变换算法(附完整源码)
查看>>