博客
关于我
C++:算法设计策略之动态规划法
阅读量:718 次
发布时间:2019-03-21

本文共 1199 字,大约阅读时间需要 3 分钟。

最长公共子序列问题

题目描述

给定两个序列X={x₁, x₂, …, xₘ}和Y={y₁, y₂, …, yₙ},目标是找出X和Y的最长公共子序列(LCS)。

输入

输入分为以下几行:

  • 第一行:输入序列X;
  • 第二行:输入序列Y。

注意:输入序列后面添加一个空格字符,以便处理特殊情况。

输出

输出X和Y的最长公共子序列的长度。

实验代码

以下是实现最长公共子序列问题的代码:

#include 
#include
#include
using namespace std;string a, b;int N = 1001;int r[N][N] = {0};int LCS(int la, int lb) { int i, j; // 初始化边界行列 for (i = 1; i <= la; ++i) r[i][0] = 0; for (j = 1; j <= lb; ++j) r[0][j] = 0; //Fill DP table for (i = 1; i <= la; ++i) { for (j = 1; j <= lb; ++j) { if (a[i] == b[j]) { r[i][j] = r[i-1][j-1] + 1; } else { if (r[i-1][j] >= r[i][j-1]) { r[i][j] = r[i-1][j]; } else { r[i][j] = r[i][j-1]; } } } } return r[la][lb];}int main() { // 读取输入 cin >> a >> b; int la = a.length(), lb = b.length(); // 方便处理边界情况 a += ' '; b += ' '; int LCS_length = LCS(la, lb); cout << LCS_length; return 0;}

结论

通过上述方法,我们能够高效地解决最长公共子序列问题。该算法基于动态规划原理,时间复杂度为O(NM),空间复杂度为O(NM)(其中N和M分别为两个序列的长度)。此外,为了确保程序的鲁棒性,代码中增加了对边界情况的处理。

转载地址:http://kozgz.baihongyu.com/

你可能感兴趣的文章
NBear简介与使用图解
查看>>
Vue过滤器_使用过滤器进行数据格式化操作---vue工作笔记0015
查看>>
Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
查看>>
NCNN中的模型量化解决方案:源码阅读和原理解析
查看>>
NCNN源码学习(1):Mat详解
查看>>
nc命令详解
查看>>
NC综合漏洞利用工具
查看>>
ndarray 比 recarray 访问快吗?
查看>>
ndk-cmake
查看>>
NdkBootPicker 使用与安装指南
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>