博客
关于我
C++:算法设计策略之动态规划法
阅读量:718 次
发布时间:2019-03-21

本文共 1199 字,大约阅读时间需要 3 分钟。

最长公共子序列问题

题目描述

给定两个序列X={x₁, x₂, …, xₘ}和Y={y₁, y₂, …, yₙ},目标是找出X和Y的最长公共子序列(LCS)。

输入

输入分为以下几行:

  • 第一行:输入序列X;
  • 第二行:输入序列Y。

注意:输入序列后面添加一个空格字符,以便处理特殊情况。

输出

输出X和Y的最长公共子序列的长度。

实验代码

以下是实现最长公共子序列问题的代码:

#include 
#include
#include
using namespace std;string a, b;int N = 1001;int r[N][N] = {0};int LCS(int la, int lb) { int i, j; // 初始化边界行列 for (i = 1; i <= la; ++i) r[i][0] = 0; for (j = 1; j <= lb; ++j) r[0][j] = 0; //Fill DP table for (i = 1; i <= la; ++i) { for (j = 1; j <= lb; ++j) { if (a[i] == b[j]) { r[i][j] = r[i-1][j-1] + 1; } else { if (r[i-1][j] >= r[i][j-1]) { r[i][j] = r[i-1][j]; } else { r[i][j] = r[i][j-1]; } } } } return r[la][lb];}int main() { // 读取输入 cin >> a >> b; int la = a.length(), lb = b.length(); // 方便处理边界情况 a += ' '; b += ' '; int LCS_length = LCS(la, lb); cout << LCS_length; return 0;}

结论

通过上述方法,我们能够高效地解决最长公共子序列问题。该算法基于动态规划原理,时间复杂度为O(NM),空间复杂度为O(NM)(其中N和M分别为两个序列的长度)。此外,为了确保程序的鲁棒性,代码中增加了对边界情况的处理。

转载地址:http://kozgz.baihongyu.com/

你可能感兴趣的文章
Nginx配置Https证书
查看>>
Nginx配置ssl实现https
查看>>
Nginx配置TCP代理指南
查看>>
Nginx配置——不记录指定文件类型日志
查看>>
nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
查看>>
Nginx配置代理解决本地html进行ajax请求接口跨域问题
查看>>
nginx配置全解
查看>>
Nginx配置参数中文说明
查看>>
Nginx配置后台网关映射路径
查看>>
nginx配置域名和ip同时访问、开放多端口
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
Nginx配置负载均衡到后台网关集群
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>