博客
关于我
C++:算法设计策略之动态规划法
阅读量:718 次
发布时间:2019-03-21

本文共 1199 字,大约阅读时间需要 3 分钟。

最长公共子序列问题

题目描述

给定两个序列X={x₁, x₂, …, xₘ}和Y={y₁, y₂, …, yₙ},目标是找出X和Y的最长公共子序列(LCS)。

输入

输入分为以下几行:

  • 第一行:输入序列X;
  • 第二行:输入序列Y。

注意:输入序列后面添加一个空格字符,以便处理特殊情况。

输出

输出X和Y的最长公共子序列的长度。

实验代码

以下是实现最长公共子序列问题的代码:

#include 
#include
#include
using namespace std;string a, b;int N = 1001;int r[N][N] = {0};int LCS(int la, int lb) { int i, j; // 初始化边界行列 for (i = 1; i <= la; ++i) r[i][0] = 0; for (j = 1; j <= lb; ++j) r[0][j] = 0; //Fill DP table for (i = 1; i <= la; ++i) { for (j = 1; j <= lb; ++j) { if (a[i] == b[j]) { r[i][j] = r[i-1][j-1] + 1; } else { if (r[i-1][j] >= r[i][j-1]) { r[i][j] = r[i-1][j]; } else { r[i][j] = r[i][j-1]; } } } } return r[la][lb];}int main() { // 读取输入 cin >> a >> b; int la = a.length(), lb = b.length(); // 方便处理边界情况 a += ' '; b += ' '; int LCS_length = LCS(la, lb); cout << LCS_length; return 0;}

结论

通过上述方法,我们能够高效地解决最长公共子序列问题。该算法基于动态规划原理,时间复杂度为O(NM),空间复杂度为O(NM)(其中N和M分别为两个序列的长度)。此外,为了确保程序的鲁棒性,代码中增加了对边界情况的处理。

转载地址:http://kozgz.baihongyu.com/

你可能感兴趣的文章
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
NSGA-Ⅲ源代码
查看>>
nsis 安装脚本示例(转)
查看>>
NSJSON的用法(oc系统自带的解析方法)
查看>>
nslookup 的基本知识与命令详解
查看>>
NSOperation基本操作
查看>>
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>